	Alternative method 1				
	7x - 3x = 36 - 16	M1	oe elimination of one variable implied by $4x = n$, where $n < 36$ and $n \ne 16$		
	4x = 20 or x = 5	A 1	oe		
	y = 0.5	A1	oe		
	Alternative method 2				
	$7 \times 2y - 3 \times 2y = 7 \times 16 - 3 \times 36$	oe elimination of one varia		riable	
	or $14y - 6y = 112 - 108$	M1	implied by $21x + 14y = 112$ and $21x + 6y = 108$ followed by $8y = n$, where $n < 112$ and $n \neq 36, 16$ or 20		
	8y = 4 or $y = 0.5$	A1	oe		
	x = 5	A 1			
4	Alternative method 3				
1	$36 - 7x = 16 - 3x$ or $\frac{36 - 2y}{7} = \frac{16 - 2y}{3}$	M1	oe elimination of one variable		
	4x = 20 or x = 5 or $8y = 4 \text{ or } y = 0.5$	A 1	oe collects terms oe		
	x = 5 and $y = 0.5$	A 1	oe		
	Additional Guidance				
	x = 5 and $y = 0.5$			M1A1A1	
	One correct value with one incorrect value (or no second value) and no working eg $x = 5$ and $y = 2$ or eg $x = 5$			M1A1A0	
	Embedded, correct values in both equations eg 7 × 5 + 2 × 0.5 = 36 and 3 × 5 + 2 × 0.5 = 16			M1A1A0	
	Embedded, correct values in one equation only eg $7 \times 5 + 2 \times 0.5 = 36$			M1A0A0	

Question	Answer	Mark	Comments		
	Alternative method 1: eliminates d				
	4c+d=7		oe equations		
	and	M1			
	10c + d = 22				
	(10-4)c = 22-7		oe correct equation in c		
	or	M1dep	eg $10c + 7 - 4c = 22$		
	6c = 15 or $c = 2.5$				
	c = 2.5 and $d = -3$	A 1	oe fraction or mixed number for c		
	Alternative method 2: eliminates c				
	4c + d = 7				
2(a)	and	M1			
_(,	10c + d = 22				
	(10-4)d = 70-88		oe correct equation in d		
	or $6d = -18$ or $d = -3$	M1dep	eg $4\left(\frac{22-d}{10}\right) + d = 7$		
	c = 2.5 and $d = -3$	A 1	oe fraction or mixed number for c		
	Alternative method 3: works out the difference or the equation of the function through the points				
	(difference =) $\frac{22-7}{10-4}$ or 2.5	M1	(gradient =) $\frac{22-7}{10-4}$ or $(m =) 2.5$		
	c = 2.5	M1dep	oe fraction or mixed number		
	c = 2.5 and $d = -3$	A1	oe fraction or mixed number for c		

Q	Answer	Mark	Comment	s
	b = 2c or $b = 16or \frac{a}{b} \times \frac{b}{c} = 3c \times 2$	M1	oe eg $\frac{a}{2c} = 3c$ or $\frac{a}{16} =$: 3 <i>c</i>
3	$(a =) 6c^2$ or $3 \times 8 \times 2 \times 8$ or 24×16 or 6×8^2 or 6×64	M1dep	oe	
	384	A1		
	Additional Guidance			
	$\frac{b}{8} = 2$			MO
	$\frac{a}{b} = 24$			MO

Q	Answer	Mark	Commen	ts	
	Alternative method 1				
	$5^2 + 7 \times 5 - c$ or $60 - c$		oe		
	and	M1			
	3 × 5 + d or 15 + d				
	25 + 35 - c = 15 + d		oe equation with squaring multiplications correctly of		
	or $60 - c = 15 + d$		manapheations correctly c	ompicted	
	or $c = 60 - y$ and $d = y - 15$	M1dep			
	and $c + d = 60 - y + y - 15$				
	45	A1			
	Alternative method 2				
4	$x^2 + 7x - c = 3x + d$	M1	oe		
	or				
	$x^2 + 7x - c - (3x + d) = 0$				
	or $x^2 + 7x - c - 3x - d = 0$				
	or $3x + d - (x^2 + 7x - c) = 0$				
	or $3x + d - x^2 - 7x + c = 0$				
	$(c+d=) x^2 + 7x - 3x$ or $(c+d=) x^2 + 4x$		oe		
	or $(c+a=)x+4x$	M1dep			
	substitutes $x = 5$				
	45	A1			
	Additional Guidance				
	Once $c + d = 45$ is seen, ignore further attempts to find values for c or d				
	45 on answer line with no working or no incorrect working			M1M1A1	

Q	Answer	Mark	Comments		
	Alternative method 1 – equates coefficients and eliminates an unknown				
	8x - 20y = 52 and $15x + 20y = 40or6x - 15y = 39$ and $6x + 8y = 16$	M1	oe equates coefficients of one unknown allow one term error		
	8x + 15x = 52 + 40 or $23x = 92or-15y - 8y = 39 - 16$ or $-23y = 23$	M1dep	oe eliminates an unknown must be correct for their equations		
	x = 4 and $y = -1$	A 2	A1 $x = 4$ from correct method or $y = -1$ from correct method		
	Alternative method 2 – substitutes for x				
5	$x = 6.5 + 2.5y$ or $x = \frac{8}{3} - \frac{4}{3}y$	M1	oe makes x the subject of one equation allow one term error		
	$3(6.5 + 2.5y) + 4y = 8$ or $11.5y = -11.5$ or $2(\frac{8}{3} - \frac{4}{3}y) - 5y = 13$ or $-\frac{23}{3}y = \frac{23}{3}$	M1dep	oe eliminates x must be correct for their rearrangement		
	x = 4 and $y = -1$	A2	A1 $y = -1$ from this method		

	Alternative method 3 – substitutes for y			
5 cont	y = 0.4x - 2.6 or y = 2 - 0.75x	M1	oe makes y the subject of one equation allow one term error	
	3x + 4(0.4x - 2.6) = 8 or $4.6x = 18.4$ or $2x - 5(2 - 0.75x) = 13$ or $5.75x = 23$	M1dep	oe eliminates y must be correct for their rearrangement	
	x = 4 and $y = -1$	A2	A1 $x = 4$ from this method	
	Alternative method 4 – makes the same unknown the subject in both equations			
	$x = 6.5 + 2.5y$ or $x = \frac{8}{3} - \frac{4}{3}y$ or y = 0.4x - 2.6 or $y = 2 - 0.75x$	M1	oe makes y or x the subject of one equation allow one term error	
	$6.5 + 2.5y = \frac{8}{3} - \frac{4}{3}y$ or $\frac{23}{6}y = -\frac{23}{6}$ or $0.4x - 2.6 = 2 - 0.75x$ or $1.15x = 4.6$	M1dep	oe makes y or x the subject of both equations (maximum one term error) and eliminates y or x must be correct for their rearrangements	
	x = 4 and $y = -1$	A2	A1 $x = 4$ from correct methodor $y = -1$ from correct methodor	
	Additional Guidance			
,	Up to M2 may be awarded for correct work seen in multiple attempts, even if not subsequently used			
	In alts 2, 3 and 4 allow rounding or truncating to 1dp or better for up to M1M1			
	29 (11 1) 213 213 113			M1M1
	Answers from trial and improvement or with no working score 0 or 4			